skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keeling, Ralph F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present improved estimates of air–sea CO2exchange over three latitude bands of the Southern Ocean using atmospheric CO2measurements from global airborne campaigns and an atmospheric 4-box inverse model based on a mass-indexed isentropic coordinate (Mθe). These flux estimates show two features not clearly resolved in previous estimates based on inverting surface CO2measurements: a weak winter-time outgassing in the polar region and a sharp phase transition of the seasonal flux cycles between polar/subpolar and subtropical regions. The estimates suggest much stronger summer-time uptake in the polar/subpolar regions than estimates derived through neural-network interpolation of pCO2data obtained with profiling floats but somewhat weaker uptake than a recent study by Long et al. [Science374, 1275–1280 (2021)], who used the same airborne data and multiple atmospheric transport models (ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) budgets from reanalyses to show that most ATMs tend to have excessive diabatic mixing (transport across moist isentrope, θe, or Mθesurfaces) at high southern latitudes in the austral summer, which leads to biases in estimates of air–sea CO2exchange. Furthermore, we show that the MSE-based constraint is consistent with an independent constraint on atmospheric mixing based on combining airborne and surface CO2observations. 
    more » « less
  2. Abstract Seasonal change of atmospheric potential oxygen (APO ∼ O2 + CO2) is a tracer for air‐sea O2flux with little sensitivity to the terrestrial exchange of O2and CO2. In this study, we present the tropospheric distribution and inventory of APO in each hemisphere with seasonal resolution, using O2and CO2measurements from discrete airborne campaigns between 2009 and 2018. The airborne data are represented on a mass‐weighted isentropic coordinate (Mθe) as an alternative to latitude, which reduces the noise from synoptic variability in the APO cycles. We find a larger seasonal amplitude of APO inventory in the Southern Hemisphere relative to the Northern Hemisphere, and a larger amplitude in high latitudes (lowMθe) relative to low latitudes (highMθe) within each hemisphere. With a box model, we invert the seasonal changes in APO inventory to yield estimates of air‐sea flux cycles at the hemispheric scale. We found a larger seasonal net outgassing of APO in the Southern Hemisphere (518 ± 52.6 Tmol) than in the Northern Hemisphere (342 ± 52.1 Tmol). Differences in APO phasing and amplitude between the hemispheres suggest distinct physical and biogeochemical mechanisms driving the air‐sea O2fluxes, such as fall outgassing of photosynthetic O2in the Northern Hemisphere, possibly associated with the formation of the seasonal subsurface shallow oxygen maximum. We compare our estimates with four model‐ and observation‐based products, identifying key limitations in these products or in the tools used to create them. 
    more » « less
  3. Chen, Huilin (Ed.)
    Abstract. Tropospheric helium variations are tightly linked to CO2 due to the co-emission of He and CO2 from natural-gasburning. Recently, Birner et al. (2022a) showed that the global consumption of natural gas has measurably increased the He content of theatmosphere. Like CO2, He is also predicted to exhibit complex spatial and temporal variability on shorter timescales, butmeasurements of these short-term variations are lacking. Here, we present the development of an improved gas delivery and purification system for thesemi-continuous mass spectrometric measurement of the atmospheric He-to-nitrogen ratio (He/N2). The method replaces the chemicalgetter used previously by Birner et al. (2021, 2022a) to preconcentrate He in an air stream with a cryogenic trap which can be more simplyregenerated by heating and which improves the precision of the measurement to 22 per meg (i.e., 0.022 ‰) in10 min (1σ). Using this “cryo-enrichment” method, we measured the He/N2 ratios in ambient air at La Jolla (California,USA) over 5 weeks in 2022. During this period, He/N2 was strongly correlated with atmospheric CO2 concentrations, as expectedfrom anthropogenic emissions, with a diurnal cycle of 450–500 per meg (max–min) caused by the sea–land breeze pattern of local winds,which modulates the influence of local pollution sources. 
    more » « less
  4. Abstract The interannual to decadal variability in natural carbon sinks limits the explanation of recent changes in atmospheric CO2concentration. Here we account for interannual and decadal variability using a simple quasi-mechanistic model of the net land carbon exchange with terms scaling with atmospheric CO2and a weighted spatial average of temperature anomalies. This approach reduces the unexplained residual in Earth’s carbon cycle budget from ±0.76 GtC per year obtained using process models to ±0.50 GtC per year, with the largest improvements on decadal timescales despite assuming constant dynamics. Our findings reveal remarkable stability of the carbon cycle and allow verification of reported global emissions to within 4.4% (95% confidence level) over the five-year stocktake cycle of the Paris Agreement—half the uncertainty reported previously. 
    more » « less
  5. The past century has been a time of unparalleled changes in global climate and global biogeochemistry. At the forefront of the study of these changes are regular time-series observations at remote stations of atmospheric CO 2 , isotopes of CO 2 , and related species, such as O 2 and carbonyl sulfide (COS). These records now span many decades and contain a wide spectrum of signals, from seasonal cycles to long-term trends. These signals are variously related to carbon sources and sinks, rates of photosynthesis and respiration of both land and oceanic ecosystems, and rates of air-sea exchange, providing unique insights into natural biogeochemical cycles and their ongoing changes. This review provides a broad overview of these records, focusing on what they have taught us about large-scale global biogeochemical change. 
    more » « less
  6. Abstract. This study considersyear-to-year and decadal variations in as well as secular trendsof the sea–air CO2 flux over the 1957–2020 period,as constrained by the pCO2 measurements from the SOCATv2021 database.In a first step,we relate interannual anomalies in ocean-internal carbon sources and sinksto local interannual anomalies insea surface temperature (SST), the temporal changes in SST (dSST/dt),and squared wind speed (u2),employing a multi-linear regression.In the tropical Pacific, we find interannual variability to be dominated by dSST/dt,as arising from variations in the upwelling of colder and more carbon-rich waters into the mixed layer.In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres,we find sensitivity to wind speed,compatible with the entrainment of carbon-rich water during wind-driven deepening of the mixed layerand wind-driven upwelling.In the Southern Ocean,the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer,with an estimated reduction in the sink trend in the range of 17 % to 42 %.In a second step,we combined the result of the multi-linear regression andan explicitly interannual pCO2-based additive correctioninto a “hybrid” estimate of the sea–air CO2 flux over the period 1957–2020.As a pCO2 mapping method,it combines (a) the ability of a regression to bridge data gaps and extrapolate intothe early decades almost void of pCO2 databased on process-related observablesand (b) the ability of an auto-regressive interpolation to follow signalseven if not represented in the chosen set of explanatory variables.The “hybrid” estimate can be applied as an ocean flux prior foratmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957. 
    more » « less
  7. null (Ed.)
    Abstract. The atmospheric He/N2 ratio is expected to increase due to the emission of He associated with fossil fuels and isexpected to also vary in both space and time due to gravitational separationin the stratosphere. These signals may be useful indicators of fossil fuelexploitation and variability in stratospheric circulation, but directmeasurements of He/N2 ratio are lacking on all timescales. Here wepresent a high-precision custom inlet system for mass spectrometers thatcontinuously stabilizes the flow of gas during sample–standard comparisonand removes all non-noble gases from the gas stream. This enablesunprecedented accuracy in measurement of relative changes in the helium molefraction, which can be directly related to the 4He/N2 ratio usingsupplementary measurements of O2/N2, Ar/N2 and CO2.Repeat measurements of the same combination of high-pressure tanks using ourinlet system achieves a He/N2 reproducibility of∼ 10 per meg (i.e., 0.001 %) in 6–8 h analyses. This compares to interannual changesof gravitational enrichment at ∼ 35 km in the midlatitudestratosphere of order 300–400 per meg and an annual tropospheric increasefrom human fossil fuel activity of less than ∼ 30 per meg yr−1 (bounded by previous work on helium isotopes). The gettering andflow-stabilizing inlet may also be used for the analysis of other noble-gasisotopes and could resolve previously unobserved seasonal cycles inKr/N2 and Xe/N2. 
    more » « less
  8. null (Ed.)
    Concern is often voiced over the ongoing loss of atmospheric O 2 . This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O 2 reservoir is so large, the predicted relative drop in O 2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO 2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O 2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming. 
    more » « less